Predicting Effective Conductivities Based on Geometric Microstructure Characteristics
نویسندگان
چکیده
Empirical relationships between effective conductivities in porous and composite materials and their geometric characteristics such as volume fraction ε, tortuosity τ and constrictivity β are established. For this purpose, 43 virtually generated 3D microstructures with varying geometric characteristics are considered. Effective conductivities σeff are determined by numerical transport simulations. Using error-minimization the following relationships have been established: σeff = σ0 εβ τ4.39 geod and σeff = σ0 εβ τ5.17 geod (simplified formula) with intrinsic conductivity σ0, geodesic tortuosity τgeod and relative prediction errors of 19% and 18%, respectively. We critically analyze the methodologies used to determine tortuosity and constrictivity. Comparing geometric tortuosity and geodesic tortuosity, our results indicate that geometric tortuosity has a tendency to overestimate the windedness of transport paths. Analyzing various definitions of constrictivity, we find that the established definition describes the effect of bottlenecks well. In summary, the established relationships are important for a purposeful optimization of materials with specific transport properties, such as porous electrodes in fuel cells and batteries.
منابع مشابه
Big data for microstructure-property relationships: a case study of predicting effective conductivities
The analysis of big data is changing industries, businesses and research since large amounts of data are available nowadays. In the area of microstructures, acquisition of (3D tomographic image) data is difficult and time-consuming. It is shown that large amounts of data representing the geometry of virtual, but realistic 3D microstructures can be generated using stochastic microstructure model...
متن کاملComparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کامل3D Microstructure Effects in Ni-YSZ Anodes: Prediction of Effective Transport Properties and Optimization of Redox Stability
This study investigates the influence of microstructure on the effective ionic and electrical conductivities of Ni-YSZ (yttria-stabilized zirconia) anodes. Fine, medium, and coarse microstructures are exposed to redox cycling at 950 °C. FIB (focused ion beam)-tomography and image analysis are used to quantify the effective (connected) volume fraction (Φeff), constriction factor (β), and tortuos...
متن کاملOptimal design of manufacturable three-dimensional composites with multifunctional characteristics
We present an optimization method to design three-dimensional composite microstructures with multifunctional characteristics. To illustrate the fascinating types of microstructures that can arise in multifunctional optimization, we apply our methodology to the study the simultaneous transport of heat and electricity in three-dimensional, two-phase composites. We assume that phase 1 has a high t...
متن کاملA new approach to microstructure optimization of solid oxide fuel cell electrodes
Designing optimal microstructures for solid oxide fuel cell (SOFC) electrodes is complicated due to the multitude of electro-chemo-physical phenomena taking place simultaneously that directly affect working conditions of a SOFC electrode and its performance. In this study, a new design paradigm is presented to obtain a balance between electrochemical sites in the form of triple phase boundary (...
متن کامل